El Bosón de Higgs

Todas las fuerzas conocidas en el universo son manifestaciones de cuatro fuerzas fundamentales, las fuerzas fuerte, electromagnética, débil, y gravitacional. Pero ¿por qué cuatro?. ¿Por qué no una fuerza principal? Los que se unieron en la búsqueda de una fuerza unificada maestra, declararon que el primer paso hacia la unificación, se había logrado en 1983 con el descubrimiento de las partículas W y Z, los bosones vectoriales intermedios. Esto trajo la verificación experimental de partículas cuya predicción ya había contribuido al premio Nobel otorgado a Weinberg, Salam y Glashow en 1979. La combinación de las fuerzas débil y electromagnética en una fuerza unificada "electrodébil", constituyó un gran avance en la teoría, y proporcionó un gran ánimo para seguir adelante con el siguiente paso, la "gran unificación" necesaria para incluir la interacción fuerte.

Si bien la unificación electrodébil fue aclamada como un gran paso adelante, quedaba un problema conceptual importante. Si las fuerzas débiles y electromagnéticas son parte de la misma fuerza electrodébil, ¿por qué la partícula de intercambio de la interacción electromagnética, el fotón, no tiene masa, mientras que las W y Z tienen masas de más de 80 veces la de un protón! Las fuerzas electromagnética y débil ciertamente no tienen el mismo aspecto en el universo actual de baja temperatura, por lo que debe haber habido algún tipo de ruptura espontánea de la simetría cuando el universo caliente se enfrió lo suficiente, esas energías de partículas cayeron por debajo de 100 GeV. Las teorías atribuyen la ruptura de la simetría a un campo llamado campo de Higgs, y se requiere la mediación de un nuevo bosón, el bosón de Higgs.


Ilustración cortesía del Fermilab, el experimento D0.

Las primeras fórmulas de las teorías, estimaban que el bosón de Higgs tendría una energía de masa superior a 1 TeV, lo que hace que las energías para el descubrimiento sean casi inalcanzable en la tierra. Ahora, desde el descubrimiento del quark top, hay una evidencia tentadora de que el bosón de Higgs puede tener energías en el rango de unos pocos cientos de GeV, y por lo tanto dentro de la gama de los aceleradores actuales. En el Fermilab, los datos de la instalación del detector D0 se utilizan con las masas de la W y el quark T, para estimar la masa del bosón de Higgs. Las sugerencias de que pueda tener una masa inferior a 200 GeV, se han convertido en una de las altas prioridades en la física de altas energías.

Índice

Conceptos de Fuerzas Fundamentales
 
HyperPhysics*****Física CuánticaM Olmo R Nave
Atrás