Quantum Harmonic OscillatorA diatomic molecule vibrates somewhat like two masses on a spring with a potential energy that depends upon the square of the displacement from equilibrium. But the energy levels are quantized at equally spaced values.
This form of the frequency is the same as that for the classical simple harmonic oscillator. The most surprising difference for the quantum case is the socalled "zeropoint vibration" of the n=0 ground state. This implies that molecules are not completely at rest, even at absolute zero temperature. The quantum harmonic oscillator has implications far beyond the simple diatomic molecule. It is the foundation for the understanding of complex modes of vibration in larger molecules, the motion of atoms in a solid lattice, the theory of heat capacity, etc. In real systems, energy spacings are equal only for the lowest levels where the potential is a good approximation of the "mass on a spring" type harmonic potential. The anharmonic terms which appear in the potential for a diatomic molecule are useful for mapping the detailed potential of such systems.

Index Schrodinger equation concepts References Beiser, Perspectives Sec 87 Blatt Sec 79  

Go Back 